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Although this solution is geometrically impossible 
(compare Schiitte & van der Waerden, 1951) it is a 
useful approximation in terms of which to describe the 
observed coordination. 
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A Rotational Search Procedure for Deteeting A Known Molecule In a Crystal* 
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A computationally swift modification of the Rossmann-Blow rotation function has been developed. 
With the use of this function the single chains present in the D2 crystals of hemoglobin from the sea 
lamprey, Petromyzon marinus, have been shown to resemble the sperm-whale metmyoglobin molecule, 
and the orientation of the lamprey hemoglobin molecules in the unit cell of this crystal has been found. 
The results are confirmed by the crystal structure analysis of lamprey hemoglobin. 

Introduction 

The oxygen-carrying heme proteins from a variety of 
sources have similar tertiary structures, but occur in 
widely differing crystal forms. In particular, the ~- and 
/?-chains of horse and human hemoglobin (Cullis, 
Muirhead, Perutz, Rossmann & North, 1962; Muir- 
head, Cox, Mazzarella & Perutz, 1967), the single 
chains of the hemoglobins from the common blood- 
worm, Glycera dibranchiata (Padlan & Love, 1968) 
and from the larval form of the fly, Chironomus thummi, 
(Huber, Formanek & Epp, 1968), and the single 
chains of seal and sperm-whale myoglobin (Scouloudi, 
1969; Bodo, Dintzis, Kendrew & Wyckoff, 1959) all 
appear to have essentially the same topology when 
viewed at low resolution, although the crystallographic 
arrangements in which they are found are quite diverse. 
The ct- and /?-chains of horse methemoglobin, for 

* A portion of this work was presented in the Ph.D. thesis 
submitted (by EEL) to the Thomas C. Jenkins Department of 
Biophysics, The Johns Hopkins University. 

example, are nearly identical with those of human 
deoxyhemoglobin (Muirhead et al., 1967), but the 
assembly into tetramers is somewhat different in the 
two cases, and the packing of these tetramers into 
their unit cells is very different indeed. 

Situations like the above, in which a known mole- 
cular structure occurs in a variety of interesting crys- 
tallographic arrangements, are likely to arise for many 
large and important biological molecules. Much labor 
would be saved in these cases if the relevant crystal 
structures were determined starting from the known 
molecular structure, rather than ab initio. To piece 
together a structure in this way one must be able to 
find the orientation and location of each molecule in 
the unit cell. The problem of fixing the translations 
has been attacked by Nordman & Nakatsu (1963), 
Rossmann, Blow, Harding & Coller (1964), Tollin 
(1966) and Crowther & Blow (1967). The fundamental 
work on determining the orientations is that of Ross- 
mann & Blow (1962). Tollin (1969) has combined these 
techniques to effect a complete protein structure deter- 
mination. 
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In what follows a 'Patterson function' denotes the 
convolution of a structure with its centrosymmetric 
image, and may be periodic or aperiodic as the case 
warrants. A 'self-Patterson function' is one containing 
only intramolecular vectors, whereas a 'cross-Patterson 
function' contains only intermolecular vectors. 

Let P1 and P2 be Patterson functions. Rossmann & 
Blow (1962) compare P~ and P2 as a function of their 
relative orientation. Their measure of agreement, R, 
is large whenever a self-Patterson function in P~ lies 
parallel to an identical or similar function in Pz. The 
Fourier coefficients of Pl and Pz are required for the 
calculation, wh.ich is done in reciprocal space for con- 
venience. We discuss here a computationally swift 
version of the Rossmann-Blow approach which we 
have used to compare the Patterson function of an 
isolated molecule of sperm-whale metmyoglobin 
(SWMb) with the Patterson function of the D2 crys- 
tals of lamprey hemoglobin (Hendrickson, Love & 
Murray, 1968), and also for other experiments. 

Nordman & Nakatsu (1963) have used a minimum 
function to compare directly the Patterson functions 
of a crystal and of a known, isolated molecule. More 
recently Nordman (1969) has used a modified minimum 
function to find the directions of the h.eme normal and 
of the axes of the a-helical sections in the SWMb 
molecule. Technical details are given by Nordman 
(1966) and Schilling (1968). 

Zwick (1969), using a reciprocal space approach 
similar to ours, has also determined the direction of 
the h.eme normal and the helix axes. In addition he 
h.,as found the orientation about the helix axis, and the 
position, of one of the helical segments. 

Sarma (1969) at Oxford has investigated the triclinic 
form of lysozyme by forming the usual crystallo- 
graphic R value between the squared transform of one 
molecule and the diffraction pattern from the crystal 
as a function of their relative orientation. 

What happens to these methods when differences 
between the known molecule and the molecules in the 
crystal cannot be ignored? A trial structure can be 
obtained, as outlined above, by finding the orientation 
and position at which a known molecule fits best in 
the unit cell of a crystal. But some type of refinement 
is then required in order to achieve an accurate struc- 
ture determination. For proteins only two possibilities 
suggest themselves: direct methods, which have not 
yet been fully tested on macromolecules, and methods 
using non-crystallographic symmetry (Main & Ross- 
mann, 1966; Muirhead et al., 1967; Maslen, 1968), 
which, are not always applicable. Clearly the technique 
of assembling accurate crystal structures from the 
known structures of the constituent molecules is far 
from complete. 

Methods 

Rossmann & Blow (1962) studied a rotational corre- 
lation function, R, which can be written 

l oo ( ) u (  ) t , ( c  ) d r  R(C) : PI X X 2 X . (1) 

Here P1 and P2 are Patterson functions, C is a variable 
rotation matrix, and U is a shape function having 
value one within a chosen volume (usually a sphere) 
and value zero outside. By Fourier transformation of 
the right-hand side they showed that, apart from con- 
stants of proportionality, 

R(C)= ~ ~ F~(p)F~(h)G(h+h'). (2) 
II h 

The summations extend over all values of h and p, the 
reciprocal lattice vectors of P1 and P2; F2 and F~ are 
the corresponding intensities. The non-integral reci- 
procal lattice vector h' is given by Cp, where C is the 
transpose of the matrix C, and G is the Fourier trans- 
form of U. 

In the Rossmann-Blow formulation P1 and P2 are 
periodic. As they point out, however, no operational 
limitation arises, since (2) applies to any Patterson 
function when properly 'crystallized'. 

The sum over h in (2) is, in fact, a convolution whose 
value is the Fourier transform of Pi U, which we term 
F~. We can therefore write that 

R(C)= ~ F~(p)F~(Cp), (3) 
P 

in which the summation need extend only over one 
hemisphere of reciprocal space. In the special case in 
which P~ is the Patterson function PM of an isolated 
molecule M, the shape function U is no longer neces- 
sary since M itself is bounded. Letting F 2 represent 
the intensity transform of M, and rotating P~ instead 
of Pz, we have 

R(C) = ~] F~(Cp)F~(p), (4) 
P 

which is the equation for the rotation function that we 
have used. 

Considering the fast Fourier transform programs 
(Cooley & Tuckey, 1965; Cooley, Lewis & Welch, 
1967) now available to evaluate the quantities F 2 or 
F 2 we believe that equation (3) or (4) will usually 
require less computation time than (2). The choice 
between direct and reciprocal space calculation, how- 
ever, must be made individually for each problem. The 
integral in (1) will always bz evaluated digitally; the 
relevant consideration is the number of sample points 
required for this evaluation versus the number of terms 
occurring in the summation in (3) or (4). 

In order to improve clarity or speed of computation 
we have made a number of modifications in equation 
(4). As suggested by Rossmann & Blow we have gen- 
erally omitted the low-order reflections wh.,en com- 
paring proteins. This technique can substantially reduce 
the number of extraneous peaks in the rotation func- 
tion, no doubt because these near-in reflections are 
strongly contaminated by scattering from the inter- 
molecular mother liquor. 
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It is clear from (1) that, if the molecular Patterson 
function PM overlaps the large values at adjacent 
origins of P2, strong but physically meaningless con- 
tributions will be made to R. When such overlap oc- 
curs removal of the origin in P2 can improve the 
clarity of the results. We have particularly noted this 
effect (Lattman, 1969) in a comparison involving 6- 
azidopurine, a planar molecule whose length is several 
times greater than that of the b axis of the crystal in 
which it occurs (Glusker, van der Helm, Love, Minkin 
& Patterson, 1968). When the possibility of overlap is 
present we replace the values of F~ in (4) by the Fou- 
rier coefficients of P2 with its origin removed. For 
proteins we have used only reflections with Bragg 
spacings larger than 6A-'within the 6A sphere'. At this 
resolution we can employ the relation (Lipson & Coch- 
ran, 1966) 

, (5) 
_ _  

where F~ 2 is the desired coefficient and F2 2 is the mean 
value of F~ within the sphere of data used. 

Again following Rossmann & Blow we have omitted 
terms in (4) for which the magnitude of F~ 2 (or F~) 
is small, effecting a considerable reduction in comput- 
ing time. When removal of the origin is not necessary, 
we have found that only 15-20 % of the reflections are 
required to produce clear maps. 

In order to assess the significance of peaks in R we 
have found it useful to compute A, the root-mean- 
square fluctuation of R, which is given by 

, 4 z =  l [ R ( 0 ) - R ] 2 d V '  (6) 

Here R is the mean value of R, and 0 (=  01, Oz, 03) is 
the triple of Eulerian angles (Goldstein, 1959) defining 
C. We have found (Lattman, 1969) in all our trials 
that a peak whose height exceeds that of all other 
peaks by at least A corresponds to an actual alignment 
of the self-Patterson functions of interest. All our maps 
are scaled to a maximum value of 150 for ease in con- 
touring. At this level typical values of A are between 
20 and 25, while the minimum value of R is in the 
range - 2 0  to 20. 

The computation of R is carried out on a grid in 
0 which spans the appropriate angular ranges (Tollin, 
Main & Rossmann, 1966). The grids we have used take 
fixed increments in each of the three Eulerian angles, 
producing uneven and inefficient sampling of R. A 
better sampling technique has been devised by Tollin 
& Cochran (1964). For every 0 each of the vectors Ch 
is computed in turn, and the value of F~(Ch) is ob- 
tained by three-dimensional, linear interpolation. The 
program when running on the IBM-7094 computer 
takes about 1 millisecond per reflection to compute 
one value of R(0). 

Most of our searches were done using the intensity 
transform of a molecule of SWMb (Bodo et al., 1959; 
Kendrew, Dickerson, Strandberg, Hart, Davies, Phil- 
lips & Shore, 1960) which was computed by Fourier 

transformation of its calculated electron density func- 
tion Ow. We computed Ow using structure factors 
derived from the atomic positions given by Watson 
(1969). In these calculations an overall, isotropic tem- 
perature factor of 20A 2 was applied; structure factors 
were calculated to 6A resolution; Ow was evaluated at 
the nodes of a 2A cubic lattice; the intensity transform 
was similarly sampled, at intervals of (1/128) A -1. The 
resultant transform has about 25,000 unique sample 
points within the 6A sphere. The computation of the 
transform directly by structure factor calculation alone 
would have taken too long. Problems of correct 
sampling encountered in this calculation are discussed 
by Goodman (1968). 

Results 

We have investigated the D2 crystals of cyanide- 
methemoglobin from the sea lamprey, Petromyzon 
marinus, with the rotation function, using SWMb as a 
test molecule. The resultant map of R displays only 
one significant peak. It is higher than any other by at 
least 1.2A. A portion of the map including the peak is 
shown in Fig. 1. In this calculation, for which the 
origin of the Patterson function was retained, we used 
about one quarter of the reflections within the 7A 
hemisphere, or some 200 data. Reflections with Bragg 
spacings larger than 12h were not used. We explored 
each Eulerian angle in the range 0-180 degrees, using 
15 degree steps. A similar calculation in which the 
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Fig. 1. Section through R(0) for the SWMb/Lamprey hemo- 
globin comparison: the major peak in R is on the right, at 
01 = -132, 02= -100, 03 = -10 °. In order to better display 
the peak, unconventional limits on 03 have been chosen. 
The space group of this rotation function is P21ab, retaining 
the order 01, 02, 03. The unit cell is defined by 0_<01 < 2r~, 
0_< 02 < 2u, 0_< 03 < z~. This section was calculated on a 5 ° 
grid for clarity. Contours below the mean are hatched. 
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Patterson function origin was deleted did not yield 
significantly different results. 

While this paper was being revised the structure of 
these D2 crystals was determined in this laboratory, 
and it is clear that the predictions of the rotation 
function are fulfilled: single chains of lamprey hemo- 
globin do resemble the SWMb molecule, and the orien- 
tation of these chains in the unit cell is as indicated 
by the position of the peak in R. 

Lamprey hemoglobin D2 crystals belong to the space 
group P212121 and h.ave one molecule weighing about 
18000 Daltons in the asymmetric unit. In this case the 
ratio of the numbers of cross- and self-Patterson func- 
tions is 3: 1, compared with a 1 : 1 ratio encountered in 
various test problems involving monoclinic space 
groups. The sensitivity of the rotation function may 
be expected to decline as this ratio increases. We were 
pleased to see, however, that this decline was not no- 
ticeable in going from the 1 : 1 to the 3:1 ratio. 

Of the various test problems studied with the rota- 
tion function (Lattman, 1969) only one was of concern. 
A comparison of a crystalline hemoglobin from the 
marine annelid, Glycera dibranchiata, with a test mole- 
cule of SWMb gave three false peaks essentially as 
high as the correct one. Yet the Glycera hemoglobin 
molecule is known to resemble SWMb (Padlan & Love, 
1968). In addition, a control comparison of this crys- 
talline Glycera hemoglobin with an isolated molecule 
of the same material did give a correct and unambi- 
guous result. We have no convincing explanation for 
these observations. 

Conclusions 

We have developed a modification of the Rossmann- 
Blow rotation function in which the squared transform 
of a molecule is compared with the intensity set from 
a crystal. It can be rapidly evaluated. We have used it 
to show that molecules in the D2 crystals of lamprey 
hemoglobin are closely similar to the sperm-whale 
metmyoglobin molecule, and to find how they are 
oriented in the unit cell of this crystal. Using this 
method, we hope to investigate crystals forms of lam- 
prey hemoglobin having polymeric asymmetric units. 
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